OVERCONVERGENT MODULAR SYMBOLS AND p-ADIC L-FUNCTIONS

نویسنده

  • ROBERT POLLACK
چکیده

Cet article est exploration constructive des rapports entre les symboles modulaires classique et les symboles modulaires p-adiques surconvergents. Plus précisément, on donne une preuve constructive d’un theorème de controle (Theoreme 1.1) du deuxiéme auteur [20]; ce theoréme preuve l’existence et l’unicité des “liftings propres” des symboles propres modulaires classiques de pente non-critique. En tant qu’application nous décrivons un algorithme en temps polynomial pour la calculation explicite des fonctions L p-adiques associées dans ce cas-là. Dans le cas de pente critique, le theorème de controle échoue toujours de produire des “liftings propres” (voire Theoreme 5.14 et [17] pour une récupération), mais l’algorithme “réussit” néanmoins de produire des fonctions L p-adiques. Dans les deux dernières sections nous présentons des données numériques pour plusieurs exemples de pente critique et examinons le polygone de Newton des fonctions L p-adiques associées. Abstract. This paper is a constructive investigation of the relationship between classical modular symbols and overconvergent p-adic modular symbols. Specifically, we give a constructive proof of a control theorem (Theorem 1.1) due to the second author [20] proving existence and uniqueness of overconvergent eigenliftings of classical modular eigensymbols of non-critical slope. As an application we describe a polynomial-time algorithm for explicit computation of associated p-adic L-functions in this case. In the case of critical slope, the control theorem fails to always produce eigenliftings (see Theorem 5.14 and [17] for a salvage), but the algorithm still “succeeds” at producing p-adic L-functions. In the final two sections we present numerical data in several critical slope examples and examine the Newton polygons of the associated p-adic L-functions. This paper is a constructive investigation of the relationship between classical modular symbols and overconvergent p-adic modular symbols. Specifically, we give a constructive proof of a control theorem (Theorem 1.1) due to the second author [20] proving existence and uniqueness of overconvergent eigenliftings of classical modular eigensymbols of non-critical slope. As an application we describe a polynomial-time algorithm for explicit computation of associated p-adic L-functions in this case. In the case of critical slope, the control theorem fails to always produce eigenliftings (see Theorem 5.14 and [17] for a salvage), but the algorithm still “succeeds” at producing p-adic L-functions. In the final two sections we present numerical data in several critical slope examples and examine the Newton polygons of the associated p-adic L-functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overconvergent Modular Symbols

The theory of overconvergent modular symbols was created by Glenn Stevens over 20 years ago, and since then the subject has had many generalizations and applications central to modern number theory (e.g. overconvergent cohomology, eigenvarieties of reductive groups, families of p-adic L-functions, just to name a few). In these notes, rather than give a systematic development of the general theo...

متن کامل

Overconvergent modular symbols Arizona Winter School 2011

Course description: This course will give an introduction to the theory of overconvergent modular symbols. This theory mirrors the theory of overconvergent modular forms in that both spaces encode the same systems of Hecke-eigenvalues. Moreover, the theory of overconvergent modular symbols has the great feature of being easily computable and is intimately connected to the theory of p-adic L-fun...

متن کامل

Critical slope p-adic L-functions

Let g be an eigenform of weight k+2 on Γ0(p)∩Γ1(N) with p N . If g is non-critical (i.e. of slope less than k + 1), using the methods of [1, 20], one can attach a p-adic L-function to g which is uniquely determined by its interpolation property together with a bound on its growth. However, in the critical slope case, the corresponding growth bound is too large to uniquely determine the p-adic L...

متن کامل

Eisenstein Cohomology and p - adic L - Functions

§0. Introduction. In this paper, we define the module D̃(V ) of distributions with rational poles on a finite dimensional rational vector space a V . This is an infinite dimensional vector space over Q endowed with a natural action of the reductive group GV := Aut(V ). Indeed, this action extends to a natural action of the adelic group GV (AQ). For each prime p, we define we define the notion of...

متن کامل

Efficient Calculation of Stark-heegner Points via Overconvergent Modular Symbols

This note presents a qualitative improvement to the algorithm presented in [DG] for computing Stark-Heegner points attached to an elliptic curve and a real quadratic field. This algorithm computes the Stark-Heegner point with a p-adic accuracy of M significant digits in t ime which is polynomial in M, the prime p being treated as a constant, rather than the O(p M) operations required for the mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010